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Abstract—This paper presents a literature review and a com-
parative analysis utilizing multiple metrics of different load bal-
ancing algorithms and a custom simulation implemented in Java.
The literature review provides a basic overview of a similar load
balancing framework and load balancing strategies, highlighting
the differences between static and dynamic load balancing. In the
second part of the paper, we present the simulation framework,
which will subsequently be utilized to compare and analyze load
balancing algorithms based on different metrics in homogeneous
and heterogeneous environments.
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framework, performance analysis, round robin, weighted round
robin, shortest queue, heterogeneous servers, homogeneous
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I. INTRODUCTION

In the modern age of digital consumption, we all depend
on the stable and reliable operation of distributed services and
internet infrastructure. From large-scale streaming providers,
including Netflix, and similar to e-commerce giants such as
Amazon, cloud infrastructure is essential for their operation.
Data centers have to manage numerous servers at once. With
big contenders like Google maintaining more than 2.5 million
collective servers in their hyper-scale data centers, as of 2021
[1], each hosting multiple nodes (units of resources tasks can
be assigned to). In addition to the power consumption and
maintenance cost, the optimal load distribution across these
nodes poses one of the primary challenges for continuous,
stable operation. The key element to ensure this balance is load
balancing. Often hardware-based, load balancers use numer-
ous algorithms to determine favorable workload assignments.
While the performance of each balancing algorithm is reliant
on its environment and the specific use case, a comparison in
a neutral environment still yields valuable performance data.
Therefore, this paper presents a load balancing simulation
framework capable of comparing different algorithms in a
local environment. A frontend simplifies usage and provides
an interface to the framework.
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II. LITERATURE REVIEW
A. Simulation-Based Load Balancing Frameworks

The concept of comparison by simulation is certainly not
new; there are numerous other simulation-based load balancing
studies, ranging over a wide array of topics. One of the most
used and intricate Simulation Frameworks among those studies
is CloudSim, originally developed by the MELBOURNE
CLOUDS Lab [2]. The open-source tool is written in Java and
operates on a discrete event-driven simulation toolkit. While
this is certainly not the only Framework used in the field,
we will primarily focus on the structure of CloudSim in this
chapter, given the similarities to our framework, namely the
event-driven approach and Java as its core language. We will
present further details on our simulation in Chapter III.
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Fig. 1. Structure of the CloudSim simulation framework (based on [3]).



CloudSim*s approach allows for the detailed simulation of:

o Data centers

e Cloudlets (i.e., tasks)

o Schedulers

o Load balancing strategies
o Custom policies

while still running locally using the Java Virtual Machine.
CloudSim uses a modular layered structure, with higher layers
dependent on lower ones, as shown in Fig. 1. The Simu-
lation Core depicts the underlying engine of the CloudSim
framework, managing fundamental components like the event
queue and simulation clock. This layer is primarily responsible
for the event-driven time advancement and event scheduling.
Above that, the Network layer simulates transfer limitations
such as bandwidth or latency between the different com-
ponents, including “Datacenters” and “Brokers”. Fundamen-
tally, it builds a virtual network topology. Located above
the Network layer, the Cloud Resource layer manages all
relevant metrics to simulate a “physical layer” containing
simulated data centers, hosts, memory, etc. This layer serves
as a foundation for subsequent layers. Similar to the concept
of a hypervisor, the Cloud Services layer maintains and
enforces policies for resource distribution, namely memory
and CPU allocation. It’s also responsible for VM-provisioning
and overseeing virtual machines’ instantiation and resource
management. Once provisioned, these virtual machines are
managed by the VM Services layer, regulating their creation,
lifetime, and destruction. The distribution and execution of
Cloudlets (i.e., simulated tasks) among the virtual machines
is also handled at this stage. Last, the User layer acts as an
interface between the simulation and configuration, offering
the functionality of defining Cloudlets and VMs. While this
Framework provides a robust baseline with all the necessary
components for a detailed simulation, specific simulation
parameters like load balancing strategies and data center
configuration are fully customisable within a wrapper of the
Library [3].

B. Load Balancing Metrics

Most load balancers require a certain amount of server
data to operate. These metrics vary among balancer im-
plementations and infrastructures but are primarily used to
ensure optimal workload distribution and client assignment
across the Network. This includes preventing bottlenecks and
system health checks to account for the failure of different
nodes. Generally, metrics can be categorized into three groups:
performance-oriented, resource-based, and network-oriented
metrics. Our simulation framework primarily focuses on the
performance and resource-based metrics, prioritizing the ef-
ficiency of algorithms and excluding networking limitations.
A survey from 2022 analyzed the occurrence of metrics in
load balancing research based on simulation frameworks and
isolated the primary ones.

TABLE I
ANALYSIS OF COMMON LOAD BALANCING METRICS IN SCIENTIFIC
RESEARCH
Seq Metrics Total of Use | Percentage

1 Throughput 12 10.6%
2 Overhead 12 10.6%
3 Degree of LB 11 9.7%
4 Latency 10 8.8%
5 Response Time 9 8%

6 Packet Loss Rate 7 6.2%
7 Resource Utilization 5 4.4%
8 Transaction Time 5 4.4%
9 Others 42 37%

Source: Reproduced from Table 3 [4]

Due to the relatively small sample set used, a definitive
development towards one of the metric categories is difficult;
nonetheless, we can see that metrics concerning performance,
such as Throughput and Overhead, play a significant role in
load balancing research. Additionally, metrics can be used
diagnostically, providing significant information about system
health and a way to identify bottlenecks and potential points
of failure. Some services can utilize this aspect to auto-
matically scale applications and reduce performance impact,
e.g., Amazon’s AWS Auto Scaling [5]. The acquisition of
metrics commonly follows either static or dynamic strategies.
A hybrid approach can achieve the desired performance in
more advanced implementations. E.g., the HypOff algorithm
for Fog environments, initially only configured with static data
such as cluster capacity, is capable of dynamic adaptation to
environment changes [6].

C. Static Load Balancing

Static algorithms utilize fixed pre-acquired parameters and
metrics, such as processing power and available memory.
During runtime, tasks are distributed deterministically with
minimal server communication, ensuring low latency and high
performance at the cost of partial deviation from optimal
distribution. A typical example would be the Round Robin
algorithm, which circularly distributes tasks. The only required
resources are a list of all available servers and the tasks
to distribute. Due to the relatively simple logic, decision-
making happens almost instantly, with minimal network com-
munication. While ensuring numerically equal distribution of
requests, critical metrics, including task size or expected task
duration, are not considered, and therefore static algorithms
can lead to performance degeneration over time [7]. As a
solution for this degeneration, static algorithms can maintain
weights for their nodes, periodically recomputing them. While
not ensuring perfect distribution, this can significantly reduce
load balance deviations without significantly increasing server
communication overhead [8].

D. Dynamic Load Balancing

Dynamic algorithms, in contrast to static ones, can request
metrics during runtime, provide a dynamic layer of decision-
making parameters, and ensure more adaptability than static
algorithms. However, the continuous metric collection and



frequent server communication result in higher latency and
increased network overhead compared to its counterpart [6].
An example would be the least connection algorithm, or given
that our simulation measures workload in tasks, we adapt the
algorithm to a shortest task queue algorithm. Assigning clients
or tasks to the server with the least scheduled workload or
connections.

III. SIMULATION FRAMEWORK

To compare the performance of load balancing algorithms
under different conditions, we implemented our own Simu-
lation Framework. The simulation was implemented in Java,
utilizing Java’s platform agnosticism through the Java Virtual
Machine. Additionally, the implementation in Java made it
simple to build a Wrapper and provide simulations through a
REST API using Spring Boot. We used this Spring Boot Back-
end to give easy access to the simulation via a Webpage, which
can be found at https://loadbalancing.jonasdrechsel.com. A
link to the GitHub repository of the simulation codebase
is available under https://github.com/Buecherfresser/Load-
Balancing-Simulations. The main goal of the simulation was
the reproducibility of results. To achieve that, we implemented
the simulation so that results do not depend on the machine by
utilizing an internal clock with an event-driven architecture.

A. Architecture Overview
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Fig. 2. Schematic diagram of the simulation architecture
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The core simulation consists of a request generator, a load
balancer, and the simulation runner/simulation loop. For the
simulation, we decided to use an event queue modeled as
a priority queue, where both request arrivals and request
completions are queued based on their event time. At the start
of each iteration, the loop forwards the internal simulation
clock to the next event in the priority queue. On event arrival,
the simulation runner calls the load balancer and assigns the
request to the server, which was selected by the load balancer
for the arriving request. The simulation runner schedules a
request completion event in the event queue for each assigned
request.

B. Event-Driven Simulation Engine
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Fig. 3. Sequence Diagram of a request arrival event

Events can be either request arrivals or request completions.
In case of request arrival, the simulation first calls the load
balancer with information about the request, a list of all
servers, and the current simulation time. The load balancer
determines which server the request should be assigned to
based on the selected algorithm.

Server server = loadBalancer.selectServer (request,
servers, clock.getCurrentTime());

Next, the simulation assigns the request to the server. The
server will immediately start to process the request or queue
it if the server is currently busy. While it is helpful to imagine
the simulated server processing the request, in reality, the
server does not handle the request. Following the event-driven
approach, the (expected) finish time of the request is added to
the global event priority queue. The finish time Ttompletion €an
be calculated easily:

D request

+ Teurrent )

Tcompletion = F
server

where Diequest 18 the request duration, Fieer is the server
processing factor, and Tiywent 1S the current simulation time.
The logical implication is that all variance of the request
execution times is known beforehand. While we generate
new requests and their processing times on the fly during
the simulation, the simulation itself is deterministic. For the
last step of one simulation cycle, a new request is generated
and added to the event queue as an event of type request
arrival. In the other case of request completion, the simulation
runner handles the completion of the request by logging the
completed request and notifying the server to start working on
the subsequent request in the server’s queue.

1) Justification of the event-driven approach: The event-
driven approach enables our simulation to be independent
of real-world timing constraints. The simulation results rely




only on the internal simulation clock rather than real time.
This has two key advantages: First, because the simulation
does not need to wait for the servers, multiple days of
load balancing can be simulated in seconds. Second, results
remain reproducible across different machines and operating
systems since the results do not depend on any external timing.
Note that while the simulation framework is system agnostic
through the JVM, it is still able to simulate different processing
performances of servers. That is possible by setting a static
processing speed factor for every server. !

C. Load Balancing Algorithms

To support various load balancing algorithms and a modular
structure, we introduced an Interface LoadBalancer, which
has the method:

Server server = loadBalancer.selectServer (request,
servers, clock.getCurrentTime());

All load balancing algorithms then override this method and
return the appropriate server. As a simplification, we decided
that the load balancing algorithms do not require simulation
time. From the perspective of the simulation results, the selec-
tion of the server happens instantaneously. While this should
not falsify the results of static load balancing algorithms,
dynamic algorithms do need a lot of time if they need to
send requests to servers to obtain information about the current
utilization of each server. This paper analyzed 4 different load
balancing algorithms, offered by the simulation:

1) Round Robin: Round Robin is a relatively simple,
widely utilized distribution algorithm. It statically assigns tasks
to all servers in a ring pattern. An internal index is maintained,
pointing to the next server in the server list and incremented
on each task assignment. Combined with a simple modulo
operation, we can ensure a numerically equal distribution to
each server circularly. We can calculate the index of the current
server ... easily:

Teyrr = (I;m’ev + 1) mod N 2)

where N is the number of servers and I, the index of
the previous server. This algorithm assumes that tasks and
servers are equal, with no variance in processing power or task
duration. Outside of heterogeneous environments, the variance
can be too severe. Round Robin can cause degeneration,
resulting in long task queues on some servers and idle time on
others, increasing the drop rate and response time over time.
To resolve this, the tasks have to be redistributed.

2) Weighted Round Robin: To address the issues with
Round Robin mentioned previously, Weighted Round Robin
operates with a hybrid approach; the static distribution logic of
Round Robin is maintained, but additionally, at the start of the
simulation, each server is assigned a weight that determines its
relative performance compared to the other servers. We treated
the weights for the simulation as the number of consecutive
assignments to the same server. After the number of successive

I'See equation (1): Calculation of a request completion time

assignments to one server is fulfilled, the next server is chosen.
Consider the scenario: 2 servers, Server; with w; = 3 and
Serverg with wo = 2. At the start of the simulation, the load
balancer Weighted Round Robin will start assigning the first
request to the server with the lowest index, Server;. Since its
weight is 3, the first 3 requests will be assigned to Server;.
After these 3 requests, wq is “fulfilled” and the load balancer
moves on to Servers, where it will assign the subsequent
two requests. In typical round robin fashion, Weighted Round
Robin will wrap around the indices and start at Server;
again. The weights stay unchanged and are static for the whole
simulation.

To calculate the weight per server, we start with the share
of the total computing power of each server dgey ey

Pserver.
> i1 i
Where pgerver 1S the processing speed factor, n is the total
number of servers, and Y ;" p; is the total (summed up)
processing speed. Intuitively, dserper 1S the share of total
processing power of the server compared to all servers in the
simulation.

To get from this share of processing power to the aforemen-
tioned number of consecutive assignments to one server, we
scale all d; to be > 1.

dserver -

3)

int scalingFactor = 1;
while (minWeight * scalingFactor < 1) {
scalingFactor = scalingFactor * 10;

}

where minWeight is min{d; | ¢ < n}. This way, we find
the minimum scalingFactor € {10 | € Ng} such that
all weights are > 1, which is necessary to use these weights
as the consecutive count of assignments to the same server.
While the final floored values do not perfectly depict the
original calculation, they provide a sufficient approximation.
The factors of 10 were chosen to easily obtain values > 1,
by shifting the commas of the values. This way, we achieve
sufficient precision while maintaining the correct ratio between
the weights for heterogeneous settings.

Given the nature of consecutive assignments to the same
server, a specific utilization is required until the queues are
balanced, resulting in higher median response times under light
load than the basic Round Robin algorithm. However, multiple
assignments of Weighted Round Robin to the same server
become less significant under heavy load.? Especially under a
setting of homogeneous servers, Weighted Round Robin leads
to higher median response times, as it causes all weights to
be the same and > 1. To illustrate why weights are often
>1, while one would expect them to be exactly 1, consider
a scenario with 5 homogeneous servers, each with the same

processing speed factor of 1. Vi < 5:
di=02 = w; =02x10=2 “4)

where w; is the weight of the server with index ¢ and d; is the
share of total computing power of the server. Since we only

2See Analysis: Homogeneous server setting under heavy load




scale by factors of 10, all weights w; are 2 in this scenario.
This implies that there will be consecutive assignments to the
same server in a homogeneous setting.® Subsequently, leading
to an uneven distribution of requests.

3) Random Assignment: Random assignment is a static
load balancing algorithm that randomly assigns tasks to
servers. Due to its relatively even distribution and minimal
overhead, random assignment is a frequently used algorithm
in homogeneous environments [9]. Our implementation simply
utilizes Java’s java.util.Random library to generate a
random server index within bounds of the available servers;
subsequently, a task is assigned to that server.

4) Shortest Queue: The Shortest Queue algorithm is similar
to a least connections approach; it is capable of requesting the
queue length parameter with a getter function from each server
individually at runtime, categorizing it as our first dynamic
algorithm. Following the metric collection, the shortest queue
is determined, and the corresponding server is selected by
finding the index of the server with the shortest queue I.,;,
as follows:

®)

where L, Lo, ...L,, are the queue lengths of all servers in the
simulation. If multiple servers have the same queue length,
the load balancer first checks whether one of the servers is
currently not busy*. The idle server will be chosen over a
currently busy server. The final tie-breaker is the lowest index
if multiple servers are idle or all are busy. The metrics are
reevaluated at every arriving task, ensuring stable and efficient
operation in heterogeneous environments and preventing the
degradation that static algorithms can cause. Compared to the
other algorithms, the shortest queue has the highest overhead,
due to frequent queue length requests. Our simulation does
not account for network delay; therefore, results differ from a
real cloud infrastructure.

Teyrr = argmin(Lq, Lo, ..., L)

D. Request and Server Models

1) Request Generator: We decided to simulate the request
arrival pattern as a Poisson Process. The Poisson process
allows for modeling random, independent events that appear at
a constant average rate. This rate, denoted by ), is a simulation
parameter representing the number of requests per second.
While this simplified model does not account for factors like
time of day, etc., it is a suitable model to measure load balanc-
ing performance under a relatively realistic arrival pattern. This
is a valuable and common assumption for measuring steady-
state performance.

Calculating the arrival time of the next request can easily be
achieved by using the exponential distribution. The exponen-
tial distribution measures the time between consecutive events.
To calculate the inter arrival time 7;,,;., We use the exponential
distribution:

Tonter = —~n(1 - U) ©)

A

3Except for server counts n where n. = 10% for some = € Ny
4That can only be the case if the queue length is 0, because the simulation
instantaneously queues the next request on completion.

W -

R - R

where A is the requests per second parameter and U is a
uniform generated random number in the interval [0, 1). Java
provides the function Math.random () to generate such a
U. If we know the arrival time of the previous request T}y .cq,
the time of arrival 7T),.,; of the next request can be calculated
easily:

Tprev + Tinter (7)

Tnext =

where Tj,ter is the result of equation (6).

Calculating the inter-arrival time using the exponential
distribution instead of the number of requests in one time
interval (e.g., per second) has a key advantage. It allows
for generating requests upon arrival of the previous request.
Essentially, only one request arrival event must always be in
the event queue. On REQUEST_ARRIVAL, the arrival time
of the subsequent request can be calculated. This reduces
memory usage significantly and allows simulations of millions
of requests.

case REQUEST_ARRIVAL:
// generate nextRequest
requestGenerator.generateRequest (eventQueue,
clock.getCurrentTime ());

handleRequestArrival (currentEvent) ;
break;

Listing 1. Only on request arrival the next request is generated

2) Servers: The required instances of the servers are created
on simulation start and added to a list. Each server has a
processing speed factor Fge,. to model heterogeneous server
processing speeds. The request processing duration T}y, ocessing
can be calculated easily:

D request

®)

Dp’rocesszng FServer
where D,.cquest 1S the base duration of the request. As we
will establish in the analysis part of this paper, heterogeneous
processing speeds greatly affect the performance of different
load balancing algorithms.

3) Simulation Clock and Event Queue: We use a double
to model the internal clock. In the Event Queue, every event
has a time assigned. For each iteration in the simulation,
we can forward the clock to the next event and fetch the
corresponding event from the event queue. By using a priority
queue, the fetching of the next event is possible in constant
time.

class SimulationClock {
private double currentTime = 0.0;

public double getCurrentTime () {
return currentTime;

}

public void advanceTime (double time) {
this.currentTime time;

}

Listing 2. Implementation of the simulation clock




IV. ANALYSIS OF SIMULATION RESULTS

A. Experimental Setup

1) Simulation parameters: The simulation requires setting
the number of servers and their corresponding processing
speed factor. A processing speed variance can be set as an
alternative to manually setting the processing speeds. The
processing speed variance randomly distributes the processing
speed factors in the range [—variance, variance). Addition-
ally, the arrival rate in requests per second needs to be
specified, and the average request duration in seconds. The
request duration is the time a server with a processing speed
of 1 takes to handle this request. Note that a request can take
longer than its calculated duration if there is any additional
waiting time. If a request is assigned to an already busy server
and queued, it will naturally have a longer total response time.
Lastly, the simulation time and the load balancing algorithm
must be specified.

2) Load intensity levels: We define three distinct load
levels:

Light load: The aggregate server capacity significantly
exceeds the incoming request rate. Servers can handle all
requests with hardly any queuing and low utilization (< 30%).
Since resource contention is minimal, we expect all algorithms
to perform similarly in this scenario.

Medium load: More queuing will appear, and server utiliza-
tion will be between 30% —70%. But even during peak request
arrival, the system should remain stable. Extra latency in the
response times might appear. Here, the differences of the load
balancing algorithms should become clearer.

Heavy load: Server utilization should constantly be close to
100%. Most requests will be queued, and heavy request drop-
ping should appear. The choice of load balancing algorithm
should have the most significant influence on the simulation
outcomes.

In our simulation, we used 5 servers. The different loads
were achieved by simulating an average of 4,000 requests per
second for light load, 10,000 per second for medium load,
and 15,000 per second for heavy load. This amounts to an
average total of requests simulated over the whole simulation
time (86.4 seconds) of 345,600 (light load), 864,000 (medium
load), and 1,296,000 (heavy load). Note that these are the
request counts per load balancer.

We ran multiple simulations on different seeds for each
setting, and the results were similar (< 1% of variance). In
the following, we will only analyze one simulation run per
setting.

3) Server configuration types: Homogeneous servers: All
servers handle requests equally quickly (Fserver1..v = 1.0).
This isolates the request durations as the main cause of
differences in the load balancing algorithms.

Heterogeneous servers: While in reality, servers can differ in
many aspects, e.g., CPU cycles per second, CPU cores, mem-
ory speed, network bandwidth, etc., we simplify heterogeneity
to a processing speed factor per server. This approach allows

us to systematically analyze how different load balancing
algorithms perform under varying degrees of heterogeneity.

4) Metrics evaluated: We use different metrics to compare
the performance of various load balancing algorithms. De-
pending on the nature of the system, metrics have varying
importance.

Response time related: The average and mean response
times are relevant metrics for the expected response time of
the simulated system. The 95th, 99th, and 99.9th percentiles of
response times give a good overview of the maximum response
times.

Drop rate: Shows how many requests are dropped and
cannot be handled. Especially relevant under heavy load since
we expect some requests to be dropped.

Server Utilization: Gives an overview of the simulated
system’s load. We track the individual server’s utilization. This
is especially relevant to determine the cause of high drop rates.

B. Performance Under Homogeneous Server Configuration

We ran simulations for Round Robin, Random Assignment,
Weighted Round Robin, and Shortest Queue with a simu-
lation time of 86.4 seconds. We found this simulation time
suitable because higher simulation run times hardly affected
the simulation results with homogeneous servers. Furthermore,
following the homogeneous server model, we chose to use
5 servers (excluding the load balancer itself), each with the
same processing power of 1. Using 5 servers would give a
good idea of request distribution, while not adding too much
complexity when analyzing the data. Requests were modeled
to follow a mean duration 3 of 300s. This was a realistic value
for simple web requests. Remember that this is the server’s
raw computing time to handle the request and not the total
response time. Due to the fact that we do not simulate any
multi-threading, our servers can handle only one request at a
time. That made a mean computing time of 300 s per request
quite plausible.

1) Light Load: The requests were set to have a mean
duration of 300us, arriving at 4,000 requests per second to
achieve a light load under 30% server utilization.

TABLE II
PERFORMANCE COMPARISON OF LOAD BALANCING ALGORITHMS
(RT = RESPONSE TIME)

Algorithm Average Median 99th pctl. | Drop
RT (us) RT (us) RT (us) Rate
(%)
Round Robin 346 304 985 0.0
Weighted Round Robin | 424 368 218 0.0
Random Assignment 421 352 362 0.0
Shortest Queue 342 302 972 0.0

We found Round Robin and Shortest Queue First to per-
form best under light load. They both achieved a median
response time of 304us (RR) and 302us (SQF). Weighted

SWhen speaking about request duration, we mean the time a server with
a processing speed factor of 1 needs to complete the request, excluding any
waiting times.



Round Robin (368us median response time) and Random
Assignment (352us) achieved slower median response times.
While this could be expected for the Random Assignment
algorithm, where consecutive assignments to the same servers
could cause uneven utilization, the explanation for Weighted
Round Robin’s worse performance is less obvious. In our
implementation of the Weighted Round Robin algorithm, the
weights for homogeneous servers® are all calculated as 2. This
caused the algorithm to assign the two consecutive requests to
the same server before moving on to the next server. This
caused a more uneven server utilization and led to higher
response times.

In the 99th percentile, the results were similar. While Round
Robin (985us) and Shortest Queue (972us) both achieved a
99th percentile response time under one second, Weighted
Round Robin (1218us) and Random Assignment (1362us)
performed worse. Note that while Weighted Round Robin with
its double assignment issues had a slower median response
time than the Random Assignment algorithm, in the 99th per-
centile, the consecutive assignments from unlucky randomness
outweighed.

No requests were dropped under light load. Each server
can queue up to 10 requests, allowing all servers to maintain
acceptable response times’. Under these conditions, all tested
algorithms achieved an average server utilization of approxi-
mately 27.2%.

As expected from static algorithm theory, Round Robin per-
formed well. While Shortest Queue First achieved equivalent
performance to Round Robin, it is a dynamic algorithm. As
described before, we do not simulate the overhead of dynamic
algorithms, like obtaining information about utilization from
the servers. Random Assignment performed 15.8% worse than
Round Robin in median response time. This simulation test
case suggested that Round Robin is the best choice for a
homogeneous server under light load in practice.

2) Medium Load: To achieve a medium load in our simu-
lation, we chose the same parameters as in the light load test
case®, but increased the requests per second rate to 10,000.
With 10 requests per second distributed to five servers and the
mean request lasting 300us, we expect a utilization of over
60%. °

6See description of the Weighted Round Robin Algorithm

"The longest response time was < 5 seconds.

8 Average request duration of 300us; five, homogeneous servers

9 Assume average request duration > mean request duration. Then we can
calculate a lower bound on the utilization, where r is one request:

10,0007 /s

% 300 x 107 %s/r =0.6 (9
bservers

Utilization/server >

TABLE III
PERFORMANCE COMPARISON OF LOAD BALANCING ALGORITHMS
UNDER MEDIUM LOAD (RT = RESPONSE TIME)

Algorithm Average Median 99th pctl. | Drop
RT (ws) RT (us) RT (us) Rate
(%)
Round Robin 465 383 1,560 0.0
Weighted Round Robin | 557 480 1,701 0.0
Random Assignment 792 602 3,008 0.07
Shortest Queue 415 355 1,247 0.0

In Table 3, the dynamic load balancing algorithm Shortest
Queue First performed best in median and 99th percentile
response time, followed by Round Robin. This observation is
logical, since Shortest Queue uses hints about server utilization
by always choosing the shortest queue. The 99th percentile
response time of Random Assignment was an outlier, taking
around 93% longer than the baseline Round Robin.

Drop rates under medium load, as expected, were close to
zero. Only the random assignment, algorithm dropping 0.07%
of requests, was again an outlier from the other considered
algorithms. The nature of the random assignment can explain
the comparatively high 99th percentile response time and the
drop rate. There will be bad sequences of assignments when
relying purely on randomness.

3) Heavy Load: To simulate a heavy load, we wanted to
achieve an average server utilization of close to 100%. To
achieve such a load, we increased the median requests per
second to 15,000. We expected to have seen some request
dropping during peak traffic, given that 16666 requests per
second, all lasting the median request time of 300us, is the
theoretical upper limit'? of the server capacity.

TABLE IV
PERFORMANCE COMPARISON OF LOAD BALANCING ALGORITHMS
UNDER HEAVY LOAD (RT = RESPONSE TIME)

Algorithm Average Median 99th pctl. | Drop
RT (us) RT (us) RT (us) Rate
(%)
Round Robin 2,223 2,258 4,622 3.57
Weighted Round Robin | 2,211 2,239 4,572 3.69
Random Assignment 2,086 2,072 4,589 7.10
Shortest Queue 2,442 2,511 4,733 2.46

According to Table IV, in comparison with Table III, the
response times increased by a factor of > 4 in all metrics,
while we increased the requests per second by a factor of 1.5.
This nonlinear increase in response times can be attributed to
the longer individual server queues, which cause a buildup of
waiting requests.

Remarkably, the median (2,072us) and average (2,086u.5)
response time of the random assignment are the lowest of the
analyzed algorithms, while it performed the worst under lighter
load. This can be explained by examining the drop rate (7.1%),
which was more than double that of the other algorithms’ drop
rates. It seems that random assignment tended to concurrently

10The theoretical upper limit for 5 servers in the described setting can be

calulated easily: 5ﬁ ~ 16666.66



assign more requests to the same server, causing the maximum
queue length of 10 to be exceeded more often, and the request
being dropped. On the other hand, this led to decreased queue
lengths, which again made the requests in these shorter queues
be served faster.

If we assume that dropped requests need to be resent, we
can calculate the expected response time E(T},1q;) using the
geometric series:

T
1-p
where T is the average response time and p is the drop rate.
Applying this formula to all algorithms, we get:

E(Ttotal) - (10)

TABLE V
EXPECTED RESPONSE TIME OF LOAD BALANCING ALGORITHMS WITH
FAILURE PENALTY

Algorithm Expected Expected RT with 10ms
RT (ws) delay (ms)

Round Robin 2,305 12.68

Weighted Round Robin | 2,296 12.68

Random Assignment 2,245 13.01

Shortest Queue 2,503 12.76

Table V shows that the expected response times without
penalty show considerably less variation, with values becom-
ing more closely aligned. While the Random Assignment’s
average response time in Table IV was around 6.16% quicker
than Round Robin’s, we now arrive at 2.60%. Additionally, to
account for additional latencies in the request life cycle (e.g.,
network delays) and demonstrate the impact of request drop
rates, a 10ms delay'' for any request can be included in the
model. This gives us a more realistic value for the expected
response time. Table V shows that when delay is added to the
response times - modeling a more realistic environment - the
aforementioned performance advantage of random assignment
disappears when accounting for its higher drop rate. Under
more realistic conditions, the increased packet drops cause
random assignment to deliver worse overall performance.

Notably, in Table IV, the shortest queue possesses the lowest
drop rate. The cause can be trivially traced to the nature
of the algorithm. Because the algorithm always chooses the
shortest queue, it will only assign a request to a server with a
full queue, and cause the request to be dropped, if all server
queues are at their maximum capacity. In return, this attribute
of low drop rate leads to the algorithm being able to compete
with Round Robin and Weighted Round Robin in the expected
response time, with added delay in Table V.

Round Robin achieved a drop rate of 3.57% second to
Shortest Queue. Additionally, the response times of Round
Robin were only marginally slower than its dynamic counter-
part, showing a median response time (2,258 pus) only around
0.85% slower than the median response time of Weighted
Round Robin (2,239 us).

""While the 10ms threshold represents a simplified approximation chosen
for illustrative purposes, it sufficiently demonstrates the principle of additional
delays.

Conclusively, the previously negligible request drop rates
become very relevant under heavier loads. When minimizing
request drop rates, the dynamic shortest queue algorithm is
likely the most suitable algorithm for peak load times. When
considering the overhead of dynamic algorithms like Shortest
Queue First, which is not depicted by our simulation, Round
Robin is the best-performing algorithm for homogeneous
servers under heavy load.

C. Performance Under Heterogeneous Server Configuration

Using the previous setup, we now simulate an environment
with variable server performance and a maximum deviation of
0.3 ([0.7;1.3])

1) Light Load: We use the same parameters as in IV.B.1
(Light Load) with variable server performance

TABLE VI
PERFORMANCE COMPARISON OF LOAD BALANCING ALGORITHMS
UNDER LIGHT LOAD, HETEROGENEOUS SERVERS (RT = RESPONSE TIME)

Algorithm Average Median 99th pctl. | Drop
RT (ws) RT (us) RT (us) Rate
(%)
Round Robin 369 312 1,185 0.0
Weighted Round Robin | 388 335 1,155 0.0
Random Assignment 464 364 1,790 0.0
Shortest Queue 315 274 943 0.0

Table VI shows Shortest Queue as the best-performing
algorithm, now with a significantly larger disparity between
the response times of static and dynamic algorithms. Shortest
Queue was with 315us on average substantially faster than
the other algorithms, with a time delta of 54us to the second
quickest algorithm, Round Robin. Additionally, the median
and 99th percentile also showed similar developments, with
deltas of 38us and 242us respectively. Random assignment
presented the worst overall performance, being 149us slower
than Shortest Queue in the average category, especially in the
99th percentile category with a response time of 1,790us.

Given the parameters used, this was a predictable result;
the improvement of dynamic algorithms in a heterogeneous
setting is reasonable due to the constant reevaluation and
metric collection. Shortest Queue, therefore, can constantly
adapt to the server loads and maintain an effective distribution.
The suboptimal performance of Round Robin and Random
Assignment also makes sense, given that they provide an even
task distribution, without considering each server’s perfor-
mance. And thus causing the previously described degener-
ation. Weighted Round Robin should prevent this; therefore,
the values seem surprising initially. This can be explained
by the way our implementation handles weights. If a server
has a weight of 30% and a scaling factor of 10 is used, that
server will receive 3 tasks consecutively. This results in some
servers having multiple requests queued while others are idle.
Compared to the previous homogeneous load test in Table II,
we can see that static algorithms decline in performance, while
Shortest Queue improved in every aspect.



2) Heavy Load: ldentical parameters were used to arrive
at comparable results to those of the simulation under heavy
load with homogeneous servers. The only differing simulation
parameter was the server processing speed factor to produce
a heterogeneous server environment.

TABLE VII
PERFORMANCE COMPARISON OF LOAD BALANCING ALGORITHMS
UNDER HEAVY LOAD, HETEROGENEOUS SERVERS (RT = RESPONSE TIME)

Algorithm Average Median 99th pctl. | Drop
RT (us) RT (us) RT (us) Rate
(%)
Round Robin 2,253 1,541 6,527 11.25
Weighted Round Robin 1,871 1,779 4,574 7.46
Random Assignment 2,263 1,848 6,312 12.38
Shortest Queue 2,487 2,413 5,700 2.63

An examination of Table VII reveals that the two static
algorithms, Round Robin and Random Assignment, showed
a delta between average and median response times of 415 us
(RA) and 712 ps (RR), indicating a right-skewed distribution.
This finding is attributable to extreme outliers to the right,
namely, extreme response times, which are becoming more
common under heavy load.

In contrast, both dynamic load balancing algorithms showed
a more symmetric distribution, having deltas between mean
and median response time of 92 ps (WRR) and 74 us (SQF).
This indicates that the dynamic algorithms handle heavy loads
better when distributing requests to heterogeneous servers.

The following figure visualizes the difference in response
times between static and dynamic load balancing algorithms
throughout the simulation. Each point is the count of all
response times in [x-0.005, x+0.005).
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Fig. 4. Response times under heavy load

In Figure 4, we can see the aforementioned skewness
of the different distributions. While the dynamic algorithm
Shortest Queue has a close to symmetric distribution, both
static algorithms are heavily right-tailed. This is also visible
in Table VII’s high 99th percentile response times.

V. CONCLUSION
A. Summary

In this paper, we analyzed 4 different load balancing algo-
rithms using our custom load balancing simulator implemented
in Java. The framework provides a simplified local environ-
ment that compares different load balancing algorithms and of-
fers a custom configuration of metrics and parameters common
in similar research. For simplicity, network communication
delay and similar interferences were disregarded, focusing
purely on the performance and efficiency of the algorithms
without external influences. Therefore, our results will differ
from more advanced simulation frameworks, e.g., CloudSim

[2].
B. Results and findings

Our comprehensive analysis shows that static algorithms
excel under homogeneous conditions, where simple distribu-
tion strategies yield more benefit due to their lower over-
head and sufficient efficiency. While not simulated by the
framework, these simple algorithms minimize dynamic metric
collection and network communication, thereby maintaining
a low overhead. Random Assignment provides the lowest
average response time in high load conditions, providing better
performance than dynamic or hybrid approaches. However,
a drop rate of =~ 7% is significant, and has to be con-
sidered upon selecting the best algorithm. When accounting
for network delays and the need for dropped requests to be
resent, this advantage disappears. In contrast, static approaches
can quickly overload servers and starve others due to their
simplistic logic when using heterogeneous servers. Hybrid
and dynamic algorithms can adjust to these environments at
runtime, resulting in superior performance and outweighing
the additional overhead of these more complex strategies in
most cases. Notably, Round Robin provides solid performance
with minimal overhead for production environments with ho-
mogeneous servers under normal load. The algorithm Random
Assignment seems outclassed by Round Robin and should not
be used according to our simulation results.

C. Limitations

Due to the space and time constraints, this paper is subject
to heavy limitations. The simulation itself is oversimplified,
not incorporating network latencies and bandwidth constraints.
Only basic algorithms were implemented and evaluated, ne-
glecting recent developments in load balancing research like
nature-based algorithms. Additionally, since our simulation
stores all completed requests in memory, the simulation size
and time are limited by the Hardware we used. Consequently,
we could not simulate more than around 50 million requests
per simulation run.

Our analysis focused on a limited subset of in-practice rele-
vant factors. Only one setting of heterogeneity was evaluated,
only testing around +30% of variation in server performance.
Additionally, our analysis lacks statistical rigor, focusing only
on singular runs for each setting. This leads to a lack of



confidence intervals, error bars, and variance reports across
multiple runs.

While this paper only shows a fraction of our framework,
all results and test environments can be reproduced using the
simulation frontend: https://loadbalancing.jonasdrechsel.com,
allowing for further research with custom parameters.

D. Future developments

The framework’s limited capabilities could be extended in
future development, with the primary focus on improving our
statistical analysis, as previously mentioned in section V.C.
Our findings are rather specific, with only one environment
used. A broader and longer simulation setup is necessary to
improve our analysis’s statistical value of our analysis. This
will also require the framework to utilize a database or file-
based write-back to replace the current in-memory storage
solution. Additionally, simulating individual data centers with
communication delay and diversifying parameter configuration
would improve the field of application for our findings. Be-
sides a more detailed analysis, specific improvements for the
framework include: implementing networking configurations,
and extending the pool of available algorithms to achieve more
detailed comparisons, especially modern approaches. Finally,
the request generation has relatively small variance in the
current version, offering an idealized environment, which is
not representative of real distributed environments.
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